@ https://ntrs.nasa.gov/search.jsp?R=19670002734 2018-07-24T09:07:01+00:00Z

‘

AN END EFFECT ASSOCIATED WITH CYLINDRICAL LANGMUIR

PROBES MOVING AT SATELLITE VELOCITIES

FACILITY FOFM 602

BY

RICHARD T. BETTINGER

GPO PRICE $
CFSTI PRICE(S) §

Hard copy (HC)

Microfiche (MF)

UNIVERSITY OF MARYLAND 853 Juyes
DEPARTMENT OF PHYSICS AND ASTRONOMY
COLLEGE PARK, MARYLAND

AUGUST 1966

- — PO
(ACCESSION NUMBER)

SN
&L/

{THRU)

/

(CYOE) _—

75

(PAGES)
(N;él\ CR OR TMX OR AD NUMBER)

(CATEGORY)

NICAL REPORT 566

S - )

i




AN END EFFECT ASSOCIATED WITH CYLINDRICAL LANGMUIR

PROBES MOVING AT SATELLITE VELOCITIES*

by

Richard T. Bettinger

University of Maryland
Department of Physics and Astronomy
College Park, Maryland

August 1966

*Supported in part by the National Aeronautics and Space Administration

Grant NGR-21-002-060.



ABSTRACT

-An anomaly in the volt-ampere characteristic of the cylindrical
Langmuir probe carried aboard the Explorer XVII Satellite has been
observed. This phenomena can be explained as an end effect which
becomes important as the angle ( &) between the axis of the probe
and the velocity vector of the satellite becomes small. An
analytical expression for this end current as a function of ©
is derived. This effect may be utilized to experimentally obtain
information on the ion temperature and its mass distribution as well
as the dimension of the sheath about the probe. It is also suggested
that this effect might be utilized to accurately detect the velocity

vector of the satellite.



INTRODUCTION

Brace1

has noted an anomaly in the ion current response of the
cylindrical Langmuir probe carried aboard Explorer XVII. This con-
sists of a relatively narrow peak with an amplitude which may be
more than twice the normal response (see Fig. 1). This phenomenon
appeared to occur only when the axis of the probe is oriented near
the velocity vector of the satellite.

This current anomaly results from the finite length of the
detector, (i.e. an end effect). When considering an infinite probe
whose axis is oriented parallel to the velocity vector of the satellite
(Fig. 2 with 0 = 0), one obtains a current equivalent to that of a
probe at rest. The open end of a probe of finite length, however,
represents a hole in the dike which gives rise to a current contri-
bution which is related to the satellite velocity. As an extreme
illustration, let us consider the case of a cool plasma. The current
through the sides of a cylindrical probe, whose radius is small compared
to that of the sheath, is given by Mott-Smith and Langmuir2 as
8KT 2

it = rlpnie E (1 + 9) . (1)

where r is the probe radius; %_ is the probe length; n; is the ambient

p

ion density; e is the electronic charge; k is the Boltzmann constant;
T is the temperature; my is the ion mass and ¢ is the nondimensional

probe potential given by

o = — , (2)
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where VP is the probe to plasma potential. The current through the

end of the sheath is given by

i = Znazniu s (3)

where a is the sheath radius and u is the satellite velocity. It is

clear that by suitable choice of the parameters i_. may be made

e
arbitrarily large as compared to i, s in particular, if the temperature
is not too large, r can be made arbitrarily small without affecting
ic. The latter is a "mechanical property" of the system and, . as we shall
see, gives rise to some interesting behavior.

This paper concerns itself with this anomalous end current and

examines the influence of various factors on this phenomenon.




COLD PLASMA

We begin by examining the case where the plasma is cold (i.e.,
Ti =T, = 0). We choose a set of cylindrical coordinates (r,z,z)
such that the z axis lies along the axis of the probe and with the
origin coinciding with the tip of the probe. We will assume that all
ions incident on the plane (z = o) within the radius (r = a)
experience the same change in potential in the (r,z) plane as if they
were accreted through the side of the sheath. (This point will be
discussed in detail in the following section.) In the case of an earth
satellite the vehicle velocity u is, in general, large compared with
the ion velocities and small as compared with that of fhe electrons.
We assume that the probe potential is negative and large enough so that
electron currents can be neglected. In this frame of reference, we
have incident on the sheath of our probe, an omnidirectional beam of
monoenergetic ions. Let us restrict our attention to their motion in
the (r,z) plane. If the radial distribution of potential may be repre-

sented as a power law
¢ = Kr—m , (4)

where m is less than two then the closest appraoch of any given ion to
the axis (r = o) is determined by its angular momentum. From the

conservation of angular momentum L, we may write

L = r2f = constant , V (5)



where the dot refers to the time derivative.

The conservation of energy leads to

L mi(r2 + r2z2 + 22) = L my(r;2 + rlzclz + 212) - ¢ s (6)

where the subscript refers to points beyond the plane (z = o). The

velocity compaonents may be written as

r = u sin 0 cos ¢ (7a)
rZ = u sin 0 sin ¢ (7b)
é = u cos O .

Our assumption regarding the potential permits us to write

z =z, , (8)

hence, we need only consider the two dimensional problem if we
further assume the probe is sufficiently long to guarentee collection.

Combining equations (5), (6) and (7), we obtain

. 2
r.2 + LT _2 u2sin20 . 9)
1 2 mj

T

The radius of closest approach is obtained by setting r; = o, hence,

1

re = |L|(u2 sinZe + 22y . (10)
1

This clearly demonstrates the one to one dependence of the radius of
closest approach and the angular momentum.
The condition for collection by the probe, assuming no reflectance,

is

e < o ’ (11)



T T e

where T, is the probe radius. The equivalent condition in terms of the

angular momemtum is

L2 < r? (u? sin20 + éi—)

— P i ’ (12)

therefore, substituting (7b) into (12) we obtain a limiting relation

between r and r such that

2 ¢
(r/rp) < CSC2§ (1 + m) s (13)

where
U =1 myu? . (14)

For sufficiently small values of 7, particles at all radii from zero
to a (the sheath radius), will be collected. There exists an angle
Los however, beyond which particles begin to be lost. This angle is

given by

sin ¢, = (-rf) (1+-—2)% 0 <Ly < . (15)

Nt =

The total current to the probe, through the end of the sheath is,

therefore, (16)

L
2m Iy Lo, @ z1 Te

i, = njeu cos © J J rdrdz + 4 J J rdrdz + 4 J J rdrdc

o o o rp C o rp

The first term is merely the physical area of the probe. The second
term includes the region where the critical radius is greater than the
sheath dimensions. The final term takes into account the region of
diminishing area and includes an upper limit on the angle, T,

where

01 <

o1



which is defined as the point at which ry = rp. That is

¢ ]%

sin ¢, = {1 + T sinZ6

’ (17)

It is evident that equation (17) is never satisfied except as a
limiting condition, hence, we may replace Z; with 7/2 in (16). After

integration, we obtain

i, = njeu cos® a? (ZQO + sin 2@0) . (18)

The variation of the normalized form factor | % (2o + sin 2z,)] = G
with ¢, is shown in Fig. 3. We define a half width in terms of the
angle ¢ at which G = 0.5. The dependence of this function on the
controlling parameters may be seen in Fig. 4 and 5. You will note that
for typical satellite conditions (i.e., the Explorer XVII electrostatic
probe) %5 = 0.028 and ¢/U = 0.5, the half width is less than 3°. It is
also of some interest to note that the width varies nearly linearly with
probe to sheath radii ratio in this regime.

While the "“cold plasma" case is very interesting, it has virtually
no application in the ionosphere. The condition of applicability can

be defined as

1
usineh»(%i)z

s (19)
where 6}, is the half width. The two sides of (19) are generally of

the same order of magnitude so that we must include the effects of plasma

temperature in our analysis.
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12
SHEATH CONSIDERATIONS

Before proceeding further it seems appropriate to consider some
properties of the sheath as they relate to this problem. As was pre-
viously indicated, the factor which limits the collection of ions
incident on the sheath is conservation of angular momemtum. If we

consider motion in the r-¢ plane, this requires
m
E 3 (20)

where EC is the component of the kinetic energy in the ¢ direction.
Thus, the rotational energy increases inversely as the square of the
radius and this must be supplied from the change in potential energy
or, if this is insufficient, by a decrease in the radial component of
energy. With the latter condition, a particle eventually reaches a point
at which the radial velocity vanishes and it is reflected.

It is evident that reflection can not occur in any region where

the potential change with radius is faster than
¢ = % . (21)

and where

K2 > L2

If these conditions are satisfied between radii r, and r, (r2 greater

than rl), then any accelerated particle incident on r, must eventually

2
pass to surface r;. If r; is coincidental with the surface of the probe,
then the effective diameter of the probe becomes r,. It must, however,

be emphasized that the condition for reflection is completely specified

by Eq. (6) and a detailed knowledge of the potential distribution
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between the sheath and the point of interest is not necessary. Rather,
we need only know the potential at the point of interest relative to
that at the boundary. There are some restrictions on the potential
distribution, however, for our present purposes a sufficient condition
to validate these conclusions is that the potential be a monotomic
function.

The potential for the unshielded probe falls off as log r in the
case of cylinder and is % for a sphere. The effect of shielding is to
cause the potential to change more rapidly and to converge to zero
within the finite distance from the probe.

We would like to estimate the conditions under which "pericritical

nk

orbits are of importance. We assume that the potential may be written

as a simple power law of the form
¢ =Ke™ , (22)
where K and m are constants. The gradient of the field is therefore

-|E] = a0 = 2 =™ (23)

Applying Gausses theorem

If-d§=J-p—dV , (24)
€0
s \'

*This terminology was introduced by Upik4 to distinguish those particle
orbits which, because of the nature of the field and the relative energy
of the particle, must spiral into the collector.
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we obtain after substitution of (23) for |E| and integrating

2MmKr™@ = 2 s (25)
€o

where Q is the charge per unit length contained within the surface

given by radius r. Substituting (22) into (25) and solving for m, we

obtain

Q

2ney

. (26)

From (24) it is evident that the distribution of charge within the
volume is unimportant so that we can take the charge to be uniformly
distributed over the surface r. This suggests a capacitor of concentric

cylinders whose capacity per unit length is of the form

21eg

C = G TED , (27)

1

where r, and r, are the diameters of the cylinders and r, < r,.

Substituting (27) into (26) noting C = %

1 r
o zn(;%) . (28)

The analogy of the sheath in terms of a cylindrical capacitor is

obviously incomplete since the charge outside r_ is not uniformly

1

distributed on T, s however, we take r, to be related to the effective

sheath radius a, anticipating that (a > r2).
We find that this approach predicts a "pericritical" potential

. r]
field (m > 2) only for large values of the ratio (;—) specifically
2

r1 3_0.66 r2 .
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Thus the potential distribution about a small probe (rp<<a) never
satisfies the pericritical condition except near the sheath edge.

Therefore, we need not consider this problem in the present
analysis, however, the apparent tendency to form a pericritical shell
near the sheath "boundary" supplies a physical basis for the concept
of a finite sheath edge as applied to collectors.

Since the charges of interest in the present context enter the
sheath through the open "end", we need to know something about the
potential distribution in this area. We restrict our consideration to
probes with radial dimensions small compared with those of the sheath.
Hence, the exact shape of the electrode tip is unimportant. Calculation
of the appropriate distribution is é complex problem involving solution
of Poisson's equation by numerical techniques. This problem has been

5,6,7

treated by a number of investigators using various approximations.

8 where the main

Probably the most general approach is that of Walker
assumption which limits the applicability of his work is that all charges are
reflected at the surface of the collector. This introduces errors,
primarily at the sheath edge , but these are not important except for large
bodies. The vast majority of the charge carriers which enter the sheath

of a small collector of the type which we are presently considering are
reflected by the angular momenta considerations previously discussed and,

in general, only a very small fraction reach the collector. In the case

of the end effect under consideration, we do collect an abnormal percent-
age of ions incident on the end of the sheath, but the bulk of these are

collected at large distances from the probe tip. The sheath, remote from

the tip, is largely constructed of charges incident through its sides so
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that again the charges collected are numerically much less than the
total number which enters the entire sheath. If follows, therefore,
that we can employ the Walker technique to this problem with some
degree of confidence.
Unfortunately, Walker calculations employing cylindrical geometry have
not as yet been completed, but it seems apparent that the sheath about
the probe tip will not differ significantly from that of a small sphere
of the same radius. We also expect that the relatively high probe
velocity with respect to the ion thermal velocities will not have a
major effect on the sheath structure over the forward tip of the probe.

Fig. 6 is a result from Walker®

,» where the density distribution of ions
is plotted for a small body moving at typical satellite velocities. The
corresponding potential field is shown in Fig. 7.

The odd shape of the body results from the calculation technique
employed by Walker. He assumes an arbitrary, small potential on a
surface at a large distance from the origin and then calculates inward.
The body shape is then any resulting equipotential surface which can be
arbitrarily selected. Figure 8 compares the potential distributions
calculated for a moving body and one at rest. The latter case assumes
a sphere with a radius of one Debye length, i.e., p=1 where the Debye
length (h) is given by

1
kT 2
)

h = (4ﬂne2

. (29)

While the geometries are only approximately equivalent, it is apparent
that the results do not differ greatly. This follows from the fact that
the ion density distribution over the front of the body is not greatly

affected by its presence and the electron thermal velocities are large
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compared with the satellite velocity. The sheath is constructed,
therefore, in a field of ion charges of roughly uniform density
(within a factor of 2) by pushing out the electrons until the sheath
contains a sufficient excess of positive ions to balance the charge
carried by the body. Hence, although the sheath is made up of
positive charges, it is modulated by rearranging the electrons. This
is particularly true at satellite velocities where the ion energies
are of the order of the probe potential (V; typically 5.5 Volts)
making the ions "stiff". This is not the case for very large bodies,
however, it does apply to spheres with radii up to several Debye lengths.
For instance, Fig. 9 (from Walkers) plots normalized ion density versus
po — p Where p, is the initial point at some distance from the body and
is the nondimensional radius (in Debye lengths). It is evident that

the density remains relatively close to unity, even for relatively large
bodies, until the convergence of space causes it to rise rapidly.

We conclude that we can, with reasonable accuracy, apply the Walker
calculations for very small spheres at rest. If we take the following

parameters as "typical", we can examine a specific situtation.

Vp = 3.0 Volts
ne = 105 el/ce
m; = 16 my, (i.e., ohH)
- 0
Te = 2500° K
r = 0.026 cm
P

This leads to a Debye length of slightly more than 1 cm and a non-

dimensional probe radius (p) of’ 0.026. The nondimensional probe potential
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(¢p) is approximately 10. Figure 10 displays the variation of pntential

with radius based on Walker's work along with a curve for which
¢ =K/p s - (30)

which represents the limiting case without shielding. Any

calculation, which takes into account the effects of shielding must

fall below this reference curve. As one might expect, the major differ-
ence between these curves occurs at large distances. We have indicated
the effective sheath radius based on the equations developed by

10

Bettinger and Walker ~ where, in the case of the sphere, the sheath

radius (p,) in Debye lengths is given as

1

1
Py = pp +0.830 3 ¥2 . (31)

The important point with regard to the present problem is the fact
that the potential is large only very near to the probe. Particles
entering the sheath through its end undergo an acceleration along the
z axis (see Fig. 2), so that depending upon the radius of initial
penetration of sheath boundary, a particle will gain an energy ¢' in

the r-¢ plane where
o < ¢' < ¢p . (32)

Thus Eq. (15) should be replaced by

1
%

. p o'
sin 75 = (38) (1 + grcaze) ; (33)
where
U' = ¢ - ¢| + ]/2 m“Z . (34)
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Given the potential function [¢ = f(p)] we may readily obtain the
reduced potential in terms of the impact radius p;. In order to
estimate the importance of this correction we calculate the average
value of the reduced potential (¢). We can represent potential, as

calculated by Walker, to good accuracy (See Fig. 10) with the function

0.0418

o3 '

The reduced potential is simply the probe potential less the initial

$(p) = (35)

value of the parameter in the r-r plane. 1If we ignore the small radial
displacement of particles as they pass through the sheath end, we may

write
2w Da
¢' = o ~ zlx J J ¢(pi) py dpi dw > (36)

0 Dp

where A is the area of integration
= 2 2} ~ 2
A= n(pa - fp ) = mp , (37)

which is over a disc in the r-z plane at z = o with the nondimensional

impact parameter as the integration variable. This yields the result

bp = 40, i - (SE)I/Z}

)3 + (&2)2} © (38)

Pa Pa

gv

IH]
-

o
-
1
o~
—
|'O
ge]

Using the "typical" values previously calculated (pp/pa = 0.026), the
correction term is less than 2%. Since the sheath radius (a) proceeds

approximately inversely as the root of the charge demsity (ng), we would
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except that we can ignore the second and third terms of (38) for

probes of this scale throughout the ionosphere.
It should be noted that the situation is not quite as favorable
as is indicated above since charges with small impact parameters have

a higher probability of collection.
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WARM PLASMA

We now turn our attention to the case of a warm plasma, that is,
we assume that each plasma constituent possesses a Maxwellian

distribution of velocities characterized by a temperature (T) and a

distribution function

w

d3N = N, (Eitf)z exp (%%) r'dr'dg'dz’ s (39)

where the dot refers to the time derivative and where the energy (E)
~is given by
E=3(@)2+ (' + (2)72) . (40)

The coordinate system (r', z', z') is a fixed frame in which there is
no net plasma motion. Let us consider a frame (r,z,z) (see figure 2)
fixed with respect to the probe and moving with respect to our initial
frame such that the velocity comporents are related by

r=1"+yu sin O cos ¢

rZ = r'z' + yu sin 0 sin ¢

g}

z=2"+4+ 14 cos 0O . (41)

We define the characteristic thermal velocity Vv, as

Vo = [ZEE)% ’ (42)

m

Substituting into (39), we obtain

d3N = Nof(r,z,z) rdr didz , (43a)




where
s el Lo =3 1 . . )
£(r,z,2) = (7%y) " exp {-—5 [(r - u sin 6 cos ¢ )? +
o

+ (rz - u sin 0 sin )2 + (z - u cos 0)2}} . (43b)
The differential of the current to probe is given by
d°i = ze d3NdA R (44)

where the differential of the area isin the r-z plane. The total current
is obtained by integrating (44) over all of velocity space and the r-g
plane for o < r < a except for those particles which are unable to reach
the collection due to their angular momenta. These particles are excluded
by appropriately adjusting the integration limits.

Since our assumptions have placed no limitation on i, the limits
of its integration are *=, We perform this integration first by replacing
the variable with x where

% = (z — J cos 0) (45)

Vo

The integration over z is then of the form

[+]

—x2 R
I=K I xe ™ dx + Kk L2952 J e ax . (46)
o - 00

The first term is symmetric about the origin and vanishes while the
second term yields

—2 exp {~13 [(f - u sin 0 cos )2 +

d“; = nje u cos © (n%'vo)
Vo

1

+ (fz - y sin 0 sin ¢)?2]} r2drdzdrdg . (47)
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We invoke the conservation of energy (Eq. 6) and angular momentum

(Eq. 5) to write

;_‘-;2 - r'—z <rc+ -y (48)

where the unindexed variable refers to a point in the plane z = o.
The initial radial velocity (r) is made up of two terms (Eq. 40)

T = ii-+ usin O cos
The first (#') is thermal while the second is that fraction of the
"drift" velocity in the radial direction. For a typical satellite
and an 02+ ion the "drift" velocity corresponds to about 5 volts.
Since our interest is restricted to small values of 0, we may

Z

therefore neglect t“ as small compared to the probe potential term.

This assumption makes our angular momenta criteria independent of ¥,

and we may integrate equation (47) from - » to + » to obtain

njeucos® _ U sin O si 2 .
dsi - —— ex {(rt u 51n2 sin ¢ ) } r2dtdrde
LI v, (49)

Rewriting Eq. (48) using Eq. (5) and setting T = o, we obtain

rp2
r2z2 < Zp {————————] = 32 50)
m r2_r2 (
P

which places an upper limit on the value of ¢ in terms of the radius,
hence, the limits of integration of { are t L/r. We substitute a new

variable of integration

g = rz — u sin © sin ¢ : (51)
Vo

which has limits Y1 and Y, where
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Y, = tb - ¢ sin 0¥, <1 (52a)
Y1 = tb + c sin ¢ 0<Yy) <1 (52b)
and where
2
b2 = ¢ ’p (53)
s mv,2 1?2 - rp2
c = ;; sin © (54)
Substituting into Eq. (49), we obtain
5 L ) oo,
d?2i = % njeu cos O—— J e Y dy + — J e v dy § rdrdz (55)
el ™

o o

The terms within the bracket are "error integrals" whose value11 as
a function of the limit are shown in Fig. 11 along with several
approximation functions. The fit for the sine function is relatively

good, however, a simpler approximation is the function
Y

ol
7%? J e’ dy = < (56a)
o

|
<
<
A
=)

=1 Y>1 (56b)

The error integral is the fraction of particles with velocity less

than Y (where Y is the velocity in units of vo). Equation (56) is
equivalent to terminating the velocity distribution in the r&,
direction at v, while maintaining the proper normalization. These
approximations are perhaps more graphically displayed if we examine the
original distribution functions rather than their integral. The

Maxwellian distribution for a single velocity component has the form
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e dy (37)

This is plotted in Fig. 12 along with the generating functions of
our other approximations.
We will approach this problem by utilizing the lowest order

approximation (equation 56). We make the following substitutions:

M
[

r/tp (58)

I= L (59)

2
2 njeucos O rp

Equation (58) normalizes the radial coordinate in terms of the
probe radius while equation (59) defines a '"normalized" current. We

ﬁay now integrate both sides of equation (55) to obtain:

T ™
s ! =to % o Xa 3 A
I = J J xdxdzg + J [ xdxdz + J J xdxdg + [ J xdxdz
T -7 1
- -2- 0 2 ! —CO CO 1
C3 xl —Co Xa
+ [ [ (1 - Yz—) xdxdz + [ J (1 - YZ-) xdxdzg
™
Lo , Xa g L
+ +
- [ J a1 - Y2 ) xdxdg - ] J (L - Y2 ) xdxdg
ty X Co X

where the superscript (Y2+, Yz_) refers to the sign of the leading term.
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Visualization of these integration limits is aided by figure 13
which represents the r - ¢ plane. The solid curve, bounded by the
limits x, and % corresponds to the effective collection area for
zero velocity in the ré direction (i.e. no thermal angular momentum).
This is the same result we obtained for the cold plasma. The dotted
curve corresponds to a particular value of ri. In the right half
plane the angular momenta associated with the drift velocity and
the thermal velocity are oppositely directed hence collection is
achieved over a larger area. This area is reduced in the left half
Plane due to the addition of these two terms. Reversing the direction
of ri will simply reflect this pattern about the { = o axis. The area
common to both curves represents that portion of the plane for which
all particles, regardless of their ri velocity, are collected. Collection
in the remaining area depends upon this velocity. Note that if the
"thermal" angular momentum is greater than that which would allow
collection from a radius x5 then the limiting angle g, becomes negative.
From symmetry it is clear we only need to integrate over the
angular limits from -~ ﬁ/z to m/2 and for one direction of xé (positive)
and then increase our result by a factor of four. The limit & is given

by the loci of radii for which y, = o, that is:

o)
92 =1 4 ———— (61)
c? sin? ¢
where: ) .
® = (62)
Yy 2
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The relevant values of 2 are those less than x, hence we define the

transistion angle Zo by equating % to X, and obtain:

ba

. il
sin C0=E— o £ |CO| SE (63)
where b, is the function b evaluated at x = X,+. The dashed
curve is bounded, inside of x4 by the curve x, for which Y, =1,
that is:
2 ¢
X, ° = 1+ (64)
(1 + ¢ sin )2
The intercept of these curves with the x = X, circle defines two
other transistional angles which are given by:
sin . = -(u_a) S IC | < I (65)
2 c 72! T 2
R 1+b T
sin £, = ~(=——3) o< gl <5 (66)

The origin of the terms in equation (60) are now apparent. We will
label the areas of figure 13 as 1, 2 and 3. In area one collection
depends upon the thermal velocity in the ri direction, hence, collection
is proportional to Y2+. In region two all particles are collected while
in region three collection is again a function of velocity. In this last
case our coefficient is (1 - Yg), corresponding to the decrease in
particles collected with increasing thermal velocity.

The first term of equation (60) represents collection over the
physical tip of the probe; the next three terms are the collection for
a ceid plasma; the following two terms add in the collection in area
three; while the final pair of terms corrects for the effect of velocity

in area one.
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Integration of equation (60) yields the result:

L
I= >+ 1 (Xaz _ 1)'{F;2 - T3) - 2by (Ez + Ca) -c (cos C2 - cos C3)
2pc_ T 2 m
- 6aF(= F28300) - b2F(5,, 5,0 } n
where:
B dz
F(Q’B’C) = 1 + ¢ sin z (68)

Q.

The form of the "F" function depends upon the absolute value of c:

4 B
2 2
F(a,B,c) = Ji =0, arc tan ;%__3__1___—_(_:2__4_-_5_ lel<1 (69a)
o :
B
= —c tan t% -c %) ‘ le|=1 (69b)
a
1 tan g re-vVez -1 (B
- 10g ICI)l (69C)
Vo2 - .
¢ 1 tan % +c+vVe2 -1 1,

The angle L3 is limited to the value g for ¢ < 1 hence the last
term of equation (67) only involves the general form (69c) except

as a limiting case. Note that for c < 1l:

kil il it
F(_ E’ —C39C) > F(° 29 - Esc) =0 (70)

The F function is sometimes troublesome to evaluate for values of
c very close to unity. This point is treated in Appendix I.
Our expression (equation 67) must properly reduce under various

limiting conditions. One of the more important of the limiting conditions
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is that of a cold plasma, i.e. vo > o. In this limit both b and ¢
diverge, however, their ratio does not:
r.2

2 ) p
75) ~ Lmu2sin20 r2 - rp2 (71)

As Vo >0, C >, —[s > Lo» and ¢, > Lo+ Let us consider the

bracketed term of equation (67). In this limit:
(ty - ¢y) » 2 ¢,
As vo becomes small, we may write:
L2 =Co - @ (72a)

_C3 = Co + a (72b)

where o may be obtained by expanding the angles as arc sines and

then making a binomial expansion of the individual terms:

3 5
= (ba _ 1} 1fba 1 3iba _ 1
b2 T [ c c] + 6[ c c} * 40[ c c] T

3
L (bg) , 3 [bs
+ 2c2{ C} + ZEf( c} + ... (73)

Therefore, as c becomes large and we neglect terms of the order of

%2 and higher, we obtain:

{1+ %[ba]
J

\

a =

Ol
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Equation (72b) may be verified by a similar expansion for ~C3e

We now note
T, = —Zba(c2 + C3) »> 4¢ o sin o
The cosine term may be expanded using equation 72 to obtain

T, = -c(cos g, - cos cs) > = 2¢ a sin ¢

We note, however, that T, # -T; as we would expect. We are,

therefore, left with a residue at the limit since:

2 L
T, + T3 = 2¢ o sin Lo > 2 sin g, {1 + %igf) + %[%?} 4+ ...}

This result is, of course, invalid and results from taking the
limit of ¢ -+ « which violates an earlier assumption. In order to

clarify this point consider the form of Y,*:

Y2+ =b -csinzg = c(&i sin ¢, - sin ¢) o < Y2+ <1
a

since the terms inside the parenthesis are finite, Y2+ will diverge
as c does, hence, the above residue. Clearly, however, both Tz and
T3 vanish as the thermal velocity vanishes.

The remaining terms may be most easily treated if we note that

we may rewrite the F function in the form:

F( - 5» 835 ©) = F( =L3, 3, =0 (74)

If we multiply the numerator and denominator of F(a,B,c) and
F(a,B,-c,) by (1 + c sin ¢) and (1 - c sin a) inside the integral

and then sum the resulting terms, we obtain:




dg

F(o,B8,c) + F(a,B,-c) = 2 m

o

As c becomes large this approaches the limit:

8
F(a,B,c) + F(a,B,-c) =~ 3% cot ¢ l
[ o4 -> ©o c
' a
We may, therfore, write:
‘. ki T
T, =- baZF[— E,gs,c} - bazF[cz, E,c]

We, therefore, obtain for our limiting form:

+% (X, - 1) (2r, + sin 2¢)
o}

=
[]
SR

e
]

. 2 2 - 2 . :
nleucosG){nrp + (a r, ) (2[_;0 + sin Zgo)}

This result is essentially the same as equation (18), but the

differences in assumptions are clearly evident. In order to make
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(75)

(76)

(77)

(78)

the expressions identical we must employ the following approximations:

¢ << U sin2 ¢

Another limiting case of interest is that of the high

temperature plasma. In this case:

c, >/
Ly T

I '*TT/2
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thus, the only current collected is that incident on the tip of the
probe, a result which we might anticipate. In general the thermal
velocity tends to "smear" the response and a very high ion temp-
erature completely supresses the effect.

The behavior of this function for small values of O is of some
interest. As O becomes small ¢, reaches the limit w/;. (When this
occurs, terms such as c¢ sin To should be replaced by their alternative
form i.e. b, in order to avoid the introduction of errors with this
fixed limit for ¢,.) Before L, reaches this limit the angle z3
‘reaches the limit -m/2 and the right-hand curve for Y, in figure 13
collapses. Further, decreases in ¢ will cause z, to reach a limit
of + m/5. The sign depends upon the realtive value of b, and 1. At
the transistion value particles located at the sheath edge and with
the maximum thermal "aﬁgular momentum'" are at the limit for collection
so that all particles, over the entire area are collected. If the
thermal energy is greater than this limit (i.e. by < 1) then some of
the particles near the edge of the sheath are lost. For most pract-
ical applications, by << 1 and the first case is normally relevant
only for very low ion temperatures or very large probes.

When by 2 1, the geometric factor (T = bracketed term of equation)

reduces to m for small c; however, if b, < 1 then we obtain:

2
T = 2mb, - —1RA_ (79
Y1 - ¢2

For small values of b,, the current is proportional to by and

m
independent of ¢ for the range where £, = - . The effect of ¢
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for larger values of b, is to reduce T for increasing values of c,
again, within the same limits. Thus the current at small angles
is simply related to the ion thermal energy [ba2 o if].

The assumption of b, << 1 implies that equation (79) will hold
for all values of c up to of the order of unity. When c = 1~ b,,

the angle ¢, becomes less than 7/, and at ¢

1 +b, &3 also departs
from its limiting value. It is clear the {, = {3 for small values

of by so that the behavior of T is dominated by the term:

T = 2baz, + ¢y (80)

over the entire range of c¢. Figure 14 compares the result using
only this expression for T and the complete form of equation (67).
fhe difference is less than 5% for bg = 0.1 except for ¢ ~ 1 -~ ba‘
The difference for by = 0.05 is only a few percent. This result is
somewhat better than one would expect simply on the basis of the
above arguments. The quality of this approximation is aided by the

fact that the terms:

(z, - Cs) - c(cos g, — cos z3)

2
are of the same order of magnitude and of opposite sign over a wide
range of values of the argument c, hence cancel each other to first
order. The last term involving the F functions is very small due
to its coefficient in baz.

We note that the shape of the curve of equation (80) depends
only on c, that is, for by << 1 and ¢ > 1, we may write: »

g, * B ~a

T, * B 40 -
3 where: B = sin ! [%]
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Equation (80) then reduces to:

=111
T = 4ba sin [EJ (81)

Thus the curve falls to one-half of its maximum value at c = V2,
thus we may relate the ion temperature to the angular half width

of (O%) this peak.

sin @% (82a)

[
N
~
=
——
=15
—
h}\l—‘

V2 1‘2] (82b)
u
Thus the curve shape represents a convenient means of determining
the ion temperature. Since the width actually depends upon the
thermal velocity of the ions their mass also enters with temperature.
Another parameter of interest is the probe potential (¢ = e\&).
This is contained within by, however, since the sheath radius also
depends upon the potential, we must take this into account. Using
equation (80), we may write the anomolous current to the probe in

the form:

Co 2 2 _ 2%%-’11}
i njeu cos Ogﬁrp + 4rp(a rp ) ¢2 sin [c

~ 4njeu cos O a rp 92 sin_lté} (83)

The sheath radius a  may be represented in the formlO:

3
(evp) /l*

a = 0.455 n 3
niﬁe(kT)%ln(;—)
P

If we ignore the ln term in a, then we find that the current is

eV
proportional to the power 1.25 of the probe voltage, (¢ = ETE)’
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and inversely to the three-quarter power of ion temperature. Thus
the amplitude is independent of the ion mass and dependent on its
temperature. Combining equations (83) and (84), we obtain:
1
1.82 ni’5 cos 0 Ip u(eVp)s/u

. . -1 (1}
i-= sin (85)
1n(a/rp) (k1)3/ c
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Applications

This study grew out of some observations by thé electrostatic
probe on Explorer XVII. Our immediate reaction is to attempt to
apply this effect to obtain additional information concerning the
ionospheric plasma. The "normal" operation of the electrostatic
probe provides data on the electron temperature and charge concen-
tration. It may also be used to supply information on the ion mass
distribution!3. One important parameter which has been heretofore
unavailable is the ion temperature. This end effect shows promise
of providing such information.

One of thecomplications faced in the case of the ionosphere is
the mixture of ion masses which often exists. Each constituent will
have its own half-width (@)) as given by equation(82b) but fortunately
the peak current contribution of each constituent is independent of
its mass. Thus the central peak depends only on the ion temperature
(assumed to be the same for all ion masses) and the sheath radius.
Since we can usually specify the dominate ion mass, we can then obtain
the ion temperature and the sheath radius.

This analysis depends .upon knowing the current through the end
of the probe. Experimentally one obtains the sum of this end current
and the more conventional current through the sides of the sheath. If
the probe is small (rp << a) and the probe potential large (eVp >> kTy),
then this "normal" current is independent of both sheath radius and

ion temperature. It takes the form!3:

i= zrplpnie[é]% [eVp + % mu sin © * (86)
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where 1pis the probe length. A third energy term in kT; has
been dropped as small compared with eVp. As © approaches zero,
this current becomes independent of the "drift" velocity u.

Even at @ = 0, we need to know the distribution of masses in
order to properly evaluate this term. According to equation (85)
our primary experimentally-controllable parameter which may be
used to differenciate between these currents is the probe. The

ratio (R) of equations 85 and 86 with 0 = 0 is:

3
w? u (eV.) /4 1 - sin2 @ \* 1 (1)
R = 0.64 P 3/ —— ] sin ié) (87)
ni’% e l,(kT) /" 1 + y sin20
where: mu?
L 2eVp

The two experimentally controllable parameters which may be used
to emphasize the end effect are the probe potential and its length.
Both have practical limitations related to the finite length of
the probe. You will note that we can define a length D, in analogy
with the Debye length, utilizing the ion drift energy rather than
its thermal energy.
U s

D= <§;;I€77) (88)
For an 0% ion, a typical satellite velocity of 8 km/sec and a
density of 10“ el/cc D has the value 17.2 cm which is of the
same order as a typical probe length L. Using eq. (88), we can

rewrite eq. (87) in the form:
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1 - sin2? ¢ Y=
D) 3/ -
R ) Eal sl RS )
1+ v sinZO‘
There exists a value of 0 for which R ¢ 1. If this angle is
greater than the one for which ¢ = 1, we may reasonably expect
to distingquish the end current. These criteria establish a
maximum charge concentration (Nip) in terms of the variables
u, Vp’ L and T4.
8.2 U
3
Njp = —— 002 (90)
e? 1.2

Figure 15 is a plot of Njp versus ¢ for various iomns, -Clearly

there exists a maximum density above which this technique can not
be used, however, if the probe potential is maintained above 5 or
10 volts this limit is not reached in the terrestrial ionosphere.

We conclude that information on ion temperature, sheath
dimension and ion mass distribution may be obtained from this
technique if the probe is operated at a fixed, large negative
potential while being swept through the velocity vector at a rate
which is slow relative to the data reading capability.

Chen14 has examined séme of the Explorer XVII data and finds
that, within the limits of accuracy of his data which is only
fair, the results agree with the above analysis. The peak half-
widths for Ot are of the order of 10°. At higher altitudes where
ut dominates, the main peak will have a half width of 309 and; in
some cases, wash-out the "normal' peak structure at 90°.

This end-effect phenomena may be utilized for many purposes
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but perhaps one of the more intriguing is its possible use as a
means of detecting the velocity vector in a satellite or other
high speed vehicle moving within the terrestrial magnetosphere.
Several approaches to this problem would seem possible. The first
would utilize the major peak structure (i.e. observe 0y for the
heaviest significant ion constituent). Unfortunately these half
widths are determined by factors not readily controlled by the
experimenter. The effects of varying ion temperature and mass
distribution would cause this peak width to vary markedly and in
some cases to become very wide. The alternative approach would
seem to have more promise. This involves observing the change in
current while varying the angle O over only a few degrees. For
this purpose we want the greatest slope in the i-V characteristics
at small angles. The fractional change in the current for small

values of ¢ may be obtained by differenciating equation (79):

b | 7]
dr . 8 i{l-c

dc = 2(1-c2)% - b, (91a)

1
T

=

— c << 1 (91b)
Z _ 1)
ba

This would indicate a maximum slope at by = 2, but the equations
we have employed lose their validity for this value of the constant.

The above analysis applies for bz in the range:

1-]c| 2320 (92)
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When b, is larger than this the form of T becomes:

T = Tha b, =1

T =17 ba>1+|C|

Thus the slope vanishes for b, outside the range of (92). Thus
we conclude that the best resolution is obtained with values of
by > %. If we vary c up to 0.1, we will give rise to a change in
the current of a few percent which should be quite adequate for
these pufposes. This amounts to a few degrees in ©,hence, our
angular resolution is potentially a small fraction of one degree.

There would appear to be a number of promising approaches
to detection. The most obvious perhaps involves a conical scan
accomplished by mechanically rotating the probe in a conical
motion with a half angle of a few degrees. The detected AC mod-
ulation of the probe current is phase compared with the mechanical
scan from which pitch and yaw error signs are developed. If the
device is used simply as a detector rather than a control element,
then the output must be normalized with the DC current level.

There are two importéﬁt objections to this system. Perhaps
the most important of the two is the use of a mechanical scan system
which presents many problems in a satellite environment. Fortunately
there appears to be several alternatives to this arrangement. For
instance, we could use three or four probes evenly spaced on the
surface of a small cone. Their mutual interaction would

be very small so long as their spacing at the root were large



compared with their radii. They would share a '"common sheath".
If b, were small, the current drawn by each probe would be a

small fraction of the total and their interaction would clearly
be minimal. With b, large, this conclusion is no longer valid
and the point requires further investigation. Another possible

approach involves the use of a segmented conical probe.

51
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Limitations

The foregoing analysis suffers from a number of limitations
imposed by the assumptions and approximations utilized in its
development. Perhaps the most severe of these is the velocity
distribution employed to represent the thermal motions of the
particles (equation 56). We have, in effect, eliminated all the
high velocity particles and have, thereby, introduced an artificial
limit (i.e. by > 1 and ¢, = I/, for which all particles are
collected). We expect that a more exact analysis might soften the
current-angle reponse curve somewhat, that is, reduce the central
portion of the curve while increasing the wings. The éffect should
be rather small, but it remains for a more accurate analysis to
quantitatively determine its importance.

Several other points not specifically considered in the
analysis deserve attention. The integration over the z velocity
utilized limits of * infinity. This is not valid when we consider
a practical situation, i.e. a small diameter probe attached to

a much larger body. The probe is shielded from particles with

velocities in excess of the satellite velocity and similarly directed.

Since the mean ion thermal velocity is, throughout most of the
ionosphere, small compared to the vehicle velocity this presents no
difficulty. In certain regions, generally a high altitude where the

ion temperatures are high and the ion masses low, this approximation
introduces a significant error. In this case, the limits of-integration

in one direction should be replaced by u. This leads to an additional
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coefficient (K) involving the error function:

X
K = 1/2[1 + 2 J e™ dy) (93)
/T 0
where x = #i. When u >> v, then K = 1, but if the reverse
o

is true and u << v, then K = Y. You will recall from figure
7 that if x > 1.4 then the error introduced by replacing K with
unity is only a few percent.

Another important factor which we have so far neglected is
the effect of the finite length of the probe. We have tacitly
assumed that all particles entering the sheath will be collected.
A finite time is required for the ions to move from their initial
radii to the surface of the collector. 1In general, they have a
large velocity parallel to the axis of the probe and might conceivably
run out of probe before being collected. Chenl% has considered the
related problem relevant to the ions incident through the sides of
the sheath. He concludes that, at least for the conditions attendant
to Explorer XVII, this effect will be negligible for the partcles
through the end of the probe. The question depends critically on the
potential distribution wifﬂin the sheath and deserves more attention.
The probliem may be avoided of course, by making the probe sufficiently
long. This has the disadvantage of increasing the current through
the sides of the sheath and increasing the error resulting from

estimating this term.
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Appendix I

The evaluation of the function F(a,b,c) where ¢ = 1.0 becomes
troublesome because of the coefficient (|c—l|)—%. This situation
is particularly serious when ba << 1. We may obtain an alternative

expression for the function in the following manner:

A=1-c¢ ’ (93)
where: lAI ce 1
b b ] -1
F(a,b,c) = ——‘1‘5—-= (1_A_S&B_L_) _dz
a,0,¢) = 1 + ¢ sing 1 + sing 1 + sinc ?

a a

This expression may be approximated by:

b b 4

« | 4z _singdg

N J 1 + sing +4 J (1 + sing)?2 * (94)
a a

The first integral has the standard solution:

b q b

—d L - L(I . 95
J T+ oint tan 4(3 - t) I , (95)
a a

We approach the second term by multiplying numerator and demoninator

by (1 - sing)?

b b . . o
sinzdg - sinz (1 - 2 sinz + sin“Z) dc
(1 + sing)? coshz
a a
b b b

J seczc tang secgdr - 2 J tan?g seczcd + J tanzgtancdcdc

a a a

b b b b

J sec?r d(secz) - 2 f tan?zd(tang) + I sec?rd(secg) - J d(sect)
a a a : a




55

Appendix I continued

b
1
= 3 {sec3r - 2tan3z - 3sect} . (96)
This may be rewritten in the form:

25ec3C - 2tan3C - 3secg = secsc(Bsinzc - 251n3c -1

= =2sing sec3c(sinzc - 2sing + 1 - 1 + %sing + %sin—lc)

~-2s8ing cosz {(1 - sinz)? + %sin_lc(l - sinz)?}
(1 - sin?g)?

cosZ (1 + 2 sing)
(1 + sing)?

_ Ycost (1 + 2 sinZ)
(sect + tanz)?

= - Ycosz (1 + 2 sinz) - tan? (g - %) . (97)
Combining terms we obtain:
T ; 2(T _ % b
F(a,b,c) = -tan (E - %) - (1L - ¢) Yeosg (1 + 2 sing) tan (E - 2) .

c =1
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